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Abstract. Motivated by hybrid graph representations, we introduce1

and study the following beyond-planarity problem, which we call h-2

Clique2Path Planarity: Given a graph G, whose vertices are par-3

titioned into subsets of size at most h, each inducing a clique, remove4

edges from each clique so that the subgraph induced by each subset is5

a path, in such a way that the resulting subgraph of G is planar. We6

study this problem when G is a simple topological graph, and establish7

its complexity in relation to k-planarity. We prove that h-Clique2Path8

Planarity is NP-complete even when h = 4 and G is a 3-plane simple9

topological graph, while it can be solved in linear time, for any h, when10

G is 1-plane.11

1 Hybrid Representations12

A common problem in the visual analysis of real-world networks is that dense13

subnetworks create occlusions and hairball-like structures in node-link diagrams14

generated by standard layout algorithms, e.g., force-directed methods. On the15

other hand, different representations, such as adjacency matrices, are well suited16

for dense graphs but make neighbor identification and path-tracing more diffi-17

cult [6, 10]. Hybrid graph representations combine different representation meta-18

phors in order to exploit their strengths and overcome their drawbacks.19

The first example of hybrid representation was the NodeTrix model [12],20

which combines node-link diagrams with adjacency-matrix representations of21

the denser subgraphs [3, 4, 12, 13]. Another example of hybrid representations22

are intersection-link representations [1]. In this model vertices are geometric23

objects and edges are either intersections between objects (intersection edges),24

or crossing-free Jordan arcs attaching at their boundary (link edges). Different25

types of objects determine different intersection-link representations.26

In [1], clique-planar drawings are defined as intersection-link representations27

in which the objects are isothetic rectangles, and the partition into intersection-28
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and link-edges is given in the input, so that the graph induced by the intersection-29

edges is composed of a set of vertex-disjoint cliques. The corresponding recogni-30

tion problem is called Clique-planarity, and it has been proved NP-complete31

in general and polynomial-time solvable in restricted cases.32

We study Clique-planarity when all cliques have bounded size. As proved33

in [1], the Clique-planarity problem can be reformulated in the terminology of34

beyond-planarity [5, 8], as follows. Given a graph G = (V,E) and a partition of its35

vertex set V into subsets V1, . . . , Vm such that the subgraph of G induced by each36

subset Vi is a clique, the goal is to compute a planar subgraph G′ = (V,E′) of G37

by replacing the clique induced by Vi, for each i = 1, . . . ,m, with a path spanning38

the vertices of Vi. We call h-Clique2Path Planarity (for short, h-C2PP) the39

version of this problem in which each clique has size at most h; see Fig. 3.40

We remark that the version of h-C2PP in which the input graph G is a41

geometric graph, i.e., it is drawn in the plane with straight-line edges, has been42

recently studied by Kindermann et al. [7] in a different context. The input of43

their problem is a set of colored points in the plane, and the goal is to decide44

whether there exist straight-line spanning trees, one for each same-colored point45

subset, that do not cross each other. Since edges are straight-line, their drawings46

are determined by the positions of the points, and hence each same-colored point47

subset can in fact be seen as a straight-line drawing of a clique, from which edges48

have to be removed so that each clique becomes a tree and the drawing becomes49

planar. They proved NP-completeness for the case in which the spanning tree50

must be a path, even when there are at most 4 vertices with the same color.51

This implies that 4-C2PP for geometric graphs in NP-complete. On the other52

hand, they provided a linear-time algorithm when there exist at most 3 vertices53

with the same color, which then extends to 3-C2PP for geometric graphs.54

In this paper, we study the version of h-C2PP in which the input graph G is55

a simple topological graph, that is, it is embedded in the plane so that each edge56

is a Jordan arc connecting its end-vertices; by simple we mean that a Jordan arc57

does not pass through any vertex, and does not intersect any arc more than once58

(either with a proper crossing or sharing a common end-vertex); finally, no three59

arcs pass through the same point. Our main goal is to study the complexity of60

this problem in relation to the well-studied class of k-planar graphs, i.e., those61

that admit drawings in which each edge has at most k crossings [1, 2, 5, 11].62

We observe that the NP-completeness of 4-C2PP for geometric graphs al-63

ready implies the NP-completeness of 4-C2PP for simple topological graphs;64

also, though not explicitly mentioned in [7], it is possible to show that the in-65

stances produced by that reduction are 4-plane (see Appendix A). We strengthen66

this result by proving in Section 2 that 4-C2PP is NP-complete even for simple67

topological 3-plane graphs. On the positive side, we prove in Section 3 that the68

h-C2PP problem for simple topological 1-plane graphs can be solved in linear69

time for any value of h. We finally remark that the 2-SAT formulation used in [7]70

to solve 3-C2PP for geometric graphs can be easily extended to solve 3-C2PP71

for any simple topological graph. Due to space limitations, some proofs are in72

the Appendix; the corresponding claims are marked with [*].73
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Fig. 1: (a) The variable gadget Gx for a variable x is represented in the left dotted
box. The clause gadget for a clause c is represented in the right dotted box. The
chain connecting Gx to Gc is represented with lighter colors. The removed edges
are dashed red. (b) All variables are False. (c) At least two variables are True.

2 NP-completeness for simple topological 3-plane graphs74

In this section we prove that the k-C2PP problem remains NP-complete for75

k = 4 even when the input simple topological graph is 3-plane.76

Since the planarity of a simple topological graph can be checked in linear77

time, the h-C2PP problem for simple topological k-plane graphs belongs to NP78

for all values of h and k. In the following, we prove the NP-hardness by means79

of a reduction from the Planar Positive 1-in-3-SAT problem. In this version80

of the Satisfiability problem, which is known to be NP-complete [9], each81

variable appears only with its positive literal, each clause has at most three82

variables, the graph obtained by connecting each variable with all the clauses it83

belongs to is planar, and the goal is to find a truth assignment in such a way84

that, for each clause, exactly one of its three variables is set to True.85

For each 3-clique we use in the reduction, there is a base edge, which is86

crossing-free in the constructed topological graph, while the other two edges87

always have crossings. We call left (right) the edge that follows (precedes) the88

base edge in the clockwise order of the edges along the 3-clique. Also, if an edge89

e of a clique does not belong to the path replacing the clique, we say that e is90

removed, and that all the crossings involving e in G are resolved.91

For each variable x, let nx be the number of clauses containing x. We con-92

struct a simple topological graph gadget Gx for x, called variable gadget ; see the93

left dotted box in Fig. 1a. This gadget contains 2nx + 2 3-cliques tx1 , . . . , t
x
2nx+2,94

forming a ring, so that the left (right) edge of txi only crosses the left (right)95

edge of txi−1 and of txi+1, for each i = 1, . . . , 2nx + 2. Also, gadget Gx contains nx96

additional 3-cliques, called τx1 , . . . , τ
x
nx

, so that the right edge of τxj crosses the97

left edge of tx2j−1 and the right edge of tx2j , while the left edge of τxj crosses the98

left edge of tx2j and the right edge of tx2j−1.99

Then, for each clause c, we construct a topological graph gadget Gc, called100

clause gadget, which is composed of a planar drawing of a 4-clique, together with101
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three 3-cliques whose left and right edges cross the edges of the 4-clique as in102

the right dotted box in Fig. 1a. In particular, observe that the right (left) edge103

of each 3-clique crosses exactly one (two) edges of the 4-clique.104

Every 3-clique in Gc corresponds to one of the three variables of c. Let x105

be one of such variables; assuming that c is the j-th clause that contains x106

according to the order of the clauses in the given formula, we connect the 3-107

clique corresponding to x in the clause gadget Gc to the 3-clique τxj of the108

variable gadget Gx of x by a chain of 3-cliques of odd length, as in Fig. 1a.109

By construction, the simple topological graph G resulting from the construc-110

tion above contains cliques of size at most 4, namely one per clause, and hence is111

a valid instance of 4-C2PP. Also, by collapsing each variable and clause gadget112

into a vertex, and each chain connecting them into an edge, the resulting graph113

G′ preserves the planarity of the Planar Positive 1-in-3-SAT instance. This114

implies that the only crossings for each edge of G are with other edges in the115

gadget it belongs to and, possibly, with the edges of the 3-cliques of a chain.116

Hence, G is 3-plane. Namely, each base edge is crossing-free; each internal edge117

of a 4-clique has one crossing; each external edge of a 4-clique has two crossings,118

and the same is true for the left and right edges of each 3-clique in a chain;119

finally, the left and right edges of each 3-clique in either a variable or a clause120

gadget has three crossings.121

In the following we prove the equivalence between the original instance of122

Planar Positive 1-in-3-SAT and the constructed instance G of 4-C2PP. For123

this, we first give a lemma stating that variable gadgets correctly represent the124

behavior of a variable; indeed they can assume one out of two possible states in125

any solution for 4-C2PP. The proof of the next lemma is in Appendix B.126

Lemma 1. [*] Let Gx be the variable gadget for a variable x in G. Then, in any127

solution for 4-C2PP, either the left edge of each 3-clique τxj , with j = 1, . . . , nx,128

is removed, or the right edge of each 3-clique τxj is removed.129

Given Lemma 1, we can associate the truth value of a variable x with the fact130

that either the left or the right edge of each 3-clique τxj in the variable gadget131

Gx of G is removed. We use this association to prove the following theorem.132

Theorem 1. [*] The 4-C2PP problem is NP-complete, even for 3-plane graphs.133

Proof (sketch). Given an instance of Planar Positive 1-in-3-SAT, we con-134

struct an instance G of 4-C2PP in linear time as described above. We prove135

one direction of the equivalence between the two problems. The other direction136

follows a similar reasoning. Suppose that there exists a solution for 4-C2PP,137

i.e., a set of edges of G whose removal resolves all crossings. By Lemma 1, for138

each variable x either the left or the right edge of each 3-clique τxj in gadget Gx139

is removed. We assign True (False) to x if the right (left) edge is removed.140

We first claim that for each clause c that contains variable x, the right (left)141

edge of the 3-clique tc(x) of the clause gadget Gc corresponding to x is removed142

if and only if the right (left) edge of each 3-clique τxj is removed. Consider the143

chain that connects tc(x) with a 3-clique τxj of Gx. For any two consecutive144
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3-cliques along the chain the left edge of one 3-clique and the right edge of the145

other 3-clique must be removed. Since the chain has odd length, the truth value146

of Gx is transferred to the 3-clique tc(x) of Gc and thus the claim follows.147

Consider now a clause c with variables x, y, and z. Let tc(x), tc(y), and148

tc(z) be the 3-cliques of the clause gadget Gc of c corresponding to x, y, and z,149

respectively. Let v be the central vertex of the 4-clique of Gc, and let vx, vy, vz150

be the vertices of this 4-clique lying inside tc(x), tc(y), and tc(z) (see Fig. 1).151

Assume that vx, vy, and vz appear in this clockwise order around v. We now152

show that, for exactly one of tc(x), tc(y), and tc(z) the right edge is removed,153

which implies that exactly one of x, y, and z is True and hence the instance of154

Planar Positive 1-in-3-SAT is positive.155

Assume that for each of tc(x), tc(y), and tc(z) the left edge is removed (i.e., all156

the three variables are set to False), as in Fig. 1b. Hence, the crossings between157

the right edges of the three 3-cliques and the three edges of triangle (vx, vy, vz) are158

not resolved. All edges of this triangle should be removed, which is not possible159

since the remaining edges of the 4-clique do not form a path. Assume now that for160

at least two of the 3-cliques, say tc(x) and tc(y), the right edge is removed (i.e.,161

x and y are set to True), as in Fig. 1c. Since each edge of triangle (vx, vy, v) is162

crossed by the left edge of one of tc(x) and tc(y), by construction, these crossings163

are not resolved. Hence, all edges of (vx, vy, v) should be removed, which is not164

possible since the remaining edges of the 4-clique do not form a path of length165

4. Finally, assume that for exactly one of the 3-cliques, say tc(x), the right edge166

is removed (i.e., x is the only one set to True), as in Fig. 1a. By removing edges167

(v, vx), (vx, vy), and (vy, vz), all crossings are resolved; the remaining edges of168

the 4-clique form a path of length 4, as desired. ut169

3 h-Clique2Path Planarity and 1-Planarity170

In this section we show that, when the given simple topological graph is 1-plane,171

problem h-C2PP can be solved in linear time in the size of the input, for any172

h. We consider all possible simple topological 1-plane cliques and show that the173

problem can be solved using only local tests, each requiring constant time. Note174

that h ≤ 6, since K6 is the largest 1-planar complete graph [8].175

Simple topological 1-plane graphs containing cliques with at most four ver-176

tices that cross each other can be constructed but it is easy to enumerate all177

these graphs (up to symmetry); see Fig. 2. Note that such graphs involve at178

most two cliques and that if K4 has a crossing, combining it with any other179

clique would violate 1-planarity; see Fig. 2a and 2b. The next lemma accounts180

for cliques with five or six vertices.181

Lemma 2. There exists no 1-plane simple topological graph that contains two182

cliques, one of which with at least five vertices, whose edges cross each other.183

Proof. Consider a simple 1-plane graph G that contains two disjoint cliques K184

and H, with five and three vertices, respectively. Let K ′ be the simple plane185

topological graph obtained from K by replacing each crossing with a dummy186
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(a) (b) (c) (d) (e) (f) (g)

Fig. 2: All 1-plane graphs involving one or more cliques of type K3 and K4.

vertex. By 1-planarity, every face of K ′ is a triangle and contains at most one187

dummy vertex. Suppose, for a contradiction, that there exists a crossing between188

an edge of K and an edge of H in G. Then there would exist at least a vertex v189

of H inside a face f of K ′ and at least one outside f . Since H is a triangle, there190

must have been two edges that connect vertices inside f to vertices outside f .191

If f contains one dummy vertex, then two of its edges are not crossed by edges192

of H, as otherwise G would not be 1-plane. Hence, both the edges that connect193

vertices inside f to vertices outside f cross the other edge of f , a contradiction.194

If f contains no dummy vertices, then each edge of f admits one crossing. Let u195

be the vertex of f that is incident to the two edges crossed by edges of H. Since196

u has degree 4 in K, it is not possible to draw the third edge of H so that it197

crosses only one edge of K, which completes the proof. ut198

Combining the previous discussion with Lemma 2, we conclude that, for each199

subgraph of the input graph G that consists either of a combination of at most200

two cliques of size at most 4, as in Fig. 2, or of a single clique not crossing any201

other clique, the crossings involving this subgraph (possibly with other edges not202

belonging to cliques) can only be resolved by removing its edges, which can be203

checked in constant time. In the next theorem, n denotes the number of vertices.204

Theorem 2. h-C2PP is O(n)-time solvable for simple topological 1-plane graphs.205

4 Open Problems206

We studied the h-Clique2Path Planarity problem for simple topological k-207

plane graphs; we proved that this problem is NP-complete for h = 4 and k = 3,208

while it is solvable in linear time for every value of h, when k = 1. The natural209

open question is: what is the complexity for simple topological 2-plane graphs?210

Kindermann et al. [7] recently proved that problem 4-C2PP is NP-complete211

for geometric 4-plane graphs. It would be interesting to study this geometric212

version of the problem for 2-plane and 3-plane graphs.213

Finally, note that the version of the h-C2PP problem when the input is an214

abstract graph (which is equivalent to Clique Planarity [1]) is NP-complete215

when h ∈ O(n). What if h is bounded by a constant or a sublinear function? We216

remark that, for h = 3, this version of the problem is equivalent to Clustered217

Planarity, when restricted to instances in which the graph induced by each218

cluster consists of three isolated vertices.219
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Appendix261
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Fig. 3: (a) A non-planar graph G. Cliques are highlighted with bold edges.
(b) A clique-planar drawing of G. (c) Replacing each clique with a path spanning
its vertices. Note that differently from (a), in (c) the first vertex and the last
vertex of each path have only one place to connect to edges, while the interior
vertices have two places: This is what makes the problem non-trivial.

A Omitted Details About the Reduction in [7]262

In this section, we show that the instances produced by the reduction in [7] are263

4-plane in general.264

The variable gadget consists of a triangle X whose edges are x, xl and xr.265

Edge x is crossing-free and the truth value of X is encoded according to which266

edge among xl and xr is crossing-free. Given a pair of triangles T1 and T2 whose267

vertices are u, y, z and v, y, z, they define two faces f1 is and f2 respectively.268

Concatenate a triangle T3 defined as in the variable gadget with f1 by inserting269

its crossing-free edge inside f1 and by crossing the other two edges of T3 with270

(u, y) and (u, z), respectively. Now, concatenate another triangle T4 defined as271

in the variable gadget with f2. If the crossing-free edge of T4 is inside f2, the272

gadget composed of T1, T2, T3 and T4 is the wire gadget; if the crossing-free edge273

of T4 is outside f2, the gadget composed of T1, T2, T3 and T4 is the inverter274

gadget. The splitting gadget consists of three variable gadgets X,Y and Z, and275

two 4-cliques, concatenated as illustrated inside the blue region in Fig. 4, where276

the yellow region contains a variable gadget, the orange region contains a wire277

gadget and the violet region contains an inverter gadget. As shown in Fig. 4,278

multiple splittings of a variable X lead to an instance where a triangle has two279

edges with four crossings.280
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Y = X

Z = X

X

X

y

z

uv

Fig. 4: An instance given by the reduction in [7]. The yellow region contains a
variable gadget, the blue region contains a splitting gadget, the orange region
contains a wire gadget and the violet region contains an inverter gadget.

B Proof of Lemma 1281

Lemma 1. [*] Let Gx be the variable gadget for a variable x in G. Then, in any282

solution for 4-C2PP, either the left edge of each 3-clique τxj , with j = 1, . . . , nx,283

is removed, or the right edge of each 3-clique τxj is removed.284

Proof. We first consider the possible removals of edges in tx1 , . . . , t
x
2nx+2 and285

claim that, in any solution for 4-C2PP, one of the two following conditions are286

satisfied: (i) for each 3-clique txi , if i is odd, then the left edge is removed, while287

if i is even the right edge is removed; (ii) for each 3-clique txi , if i is odd, then288

the right edge is removed, while if i is even the left edge is removed. Note that289

this claim is sufficient to prove the statement; in fact, if condition (i) holds (as290

in Fig. 1a), then the right edge of each 3-clique τxj must be removed, in order291

to resolve its crossings with the right edge of tx2j−1 and with the left edge of292

tx2j , while if condition (ii) holds, then the left edge of each 3-clique τxj must be293

removed, in order to resolve its crossings with the left edge of tx2j−1 and with the294

right edge of tx2j .295

In order to prove the claim, we consider the possible removals of edges of tx1 .296

Suppose first that the base edge of tx1 is removed. Thus, the crossings between297

the left (right) edge of tx1 and the left (right) edge of tx2 are not resolved; this298

implies that they have to be resolved by removing both the left and the right299

edge of tx2 , which is not possible. If the right edge of tx1 is removed, then the300

crossing between the right edges of tx1 and tx2 is resolved, while the one between301

their left edges is not. Hence, the left edge of tx2 must be removed. By iterating302

this argument we conclude that the right (left) edge of each txi with i odd (even)303

is removed. Symmetrically, we can prove that, if the left edge of tx1 is removed,304

then the left (right) edge of each txi with i odd (even) is removed. This concludes305

the proof of the lemma. ut306
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C Proof of Theorem 1307

Theorem 1. [*] The 4-C2PP problem is NP-complete, even for 3-plane graphs.308

Proof. Given an instance of Planar Positive 1-in-3-SAT, we construct an309

instance G of 4-C2PP in linear time as described above. We prove their equiv-310

alence.311

Suppose first that there exists a solution for 4-C2PP, i.e., a set of edges of G312

whose removal resolves all crossings. By Lemma 1, for each variable x either the313

left or the right edge of each 3-clique τxj in the variable gadget Gx is removed.314

If the right edge is removed, we assign value True to variable x, otherwise we315

assign False.316

In order to prove that this assignment results in a solution for the given317

formula of Planar Positive 1-in-3-SAT, we first show that, for each clause c318

that contains variable x, the right (left) edge of the 3-clique tc(x) of the clause319

gadget Gc corresponding to x is removed if and only if the right (left) edge320

of each 3-clique τxj is removed. Namely, consider the chain that connects tc(x)321

with a 3-clique τxj of Gx. Note that, for any two consecutive 3-cliques along322

the chain, the left edge of one 3-clique and the right edge of the other 3-clique323

must be removed. Since the chain has odd length, the right (left) edge of tc(x)324

is removed if and only if the right (left) edge of τxj is removed, that is, the truth325

value of Gx is transferred to the 3-clique tc(x) of Gc.326

Finally, consider any clause c, composed of variables x, y, and z. Let tc(x),327

tc(y), and tc(z) be the three 3-cliques of the clause gadget Gc of c corresponding328

to x, y, and z, respectively; also, let v be the central vertex of the 4-clique of329

Gc, and let vx, vy, vz be the vertices of this 4-clique lying inside tc(x), tc(y), and330

tc(z), respectively; see Fig. 1. We assume w.l.o.g. that vx, vy, and vz appear in331

this clockwise order around v. As discussed above, the left or the right edge of332

tc(x) (of tc(y); of tc(z)) is removed depending on whether the left or the right333

edge of each τxj (of each τyj ; of each τzj ) is removed. We show that, for exactly334

one of tc(x), tc(y), and tc(z) the right edge is removed, which then implies that335

exactly one of x, y, and z is True, and hence the instance of Planar Positive336

1-in-3-SAT is positive.337

Suppose first that for each of tc(x), tc(y), and tc(z) the left edge is removed338

(and hence all the three variables are set to False), as in Fig. 1b. This implies339

that the crossings between the right edges of the three 3-cliques and the three340

edges of triangle (vx, vy, vz) are not resolved. Hence, all the edges of this triangle341

should be removed, which is not possible since the remaining edges of the 4-342

clique do not form a path. Suppose now that for at least two of tc(x), tc(y), and343

tc(z), say tc(x) and tc(y), the right edge is removed (and hence x and y are set344

to True), as in Fig. 1c. Since each edge of triangle (vx, vy, v) is crossed by the left345

edge of one of tc(x) and tc(y), by construction, these crossings are not resolved.346

Hence, all the edges of (vx, vy, v) should be removed, which is not possible since347

the remaining edges of the 4-clique do not form a path of length 4. Suppose348

finally that for exactly one of tc(x), tc(y), and tc(z), say tc(x), the right edge is349

removed (and hence x is the only one to be set to True), as in Fig. 1a. Then, by350
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removing edges (v, vx), (vx, vy), and (vy, vz), all the crossings are resolved and351

the remaining edges of the 4-clique form a path of length 4, as desired.352

The proof of the other direction is analogous. Namely, suppose that there353

exists a truth assignment that assigns a True value to exactly one variable in354

each clause. Then, for each variable x that is set to True (to False), we remove355

the right (left) edge of each 3-clique txi , with i = 2j−1 and j = 1, . . . , nx + 1, we356

remove the left (right) edge of each 3-clique txi , with i = 2j and j = 1, . . . , nx+1,357

and we remove the right (left) edge of each 3-clique τxj , with j = 1, . . . , nx. Then,358

we remove the left or right edge of each 3-clique in a chain so that for any two359

consecutive 3-cliques, one of them has been removed the left edge and the other360

one the right edge. This ensures that, for each clause c, the right edge of exactly361

one of the three 3-cliques that belong to the clause gadget Gc has been removed,362

say the one corresponding to variable x, while for the other two 3-cliques the left363

edge has been removed. Hence, we can resolve all crossings by removing edges364

(v, vx), (vx, vy), and (vy, vz), as discussed above; see Fig. 1a. The statement365

follows. ut366


